ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть l1, l2, ..., ln несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке X1, X2, ..., Xn так, чтобы перпендикуляр, восставленный к прямой lk в точке Xk (для любого натурального k < n), проходил через точку Xk + 1, а перпендикуляр, восставленный к прямой ln в точке Xn, проходил через точку X1.

Попробуйте сформулировать и доказать аналогичную теорему в пространстве.

Вниз   Решение


Дано n чисел, x1, x2, ..., xn, при этом  xk = ±1.  Доказать, что если  x1x2 + x2x3 + ... + xnx1 = 0,  то n делится на 4.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78190

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Дано n чисел, x1, x2, ..., xn, при этом  xk = ±1.  Доказать, что если  x1x2 + x2x3 + ... + xnx1 = 0,  то n делится на 4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .