ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 999-значное число. Известно, что если взять из него любые 50 последовательных цифр и вычеркнуть все остальные, то полученное число будет делиться на 250. (Оно может начинаться с нулей или просто быть нулём.) Доказать, что исходное число делится на 2999.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78737  (#3)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 8,9,10

Дано 999-значное число. Известно, что если взять из него любые 50 последовательных цифр и вычеркнуть все остальные, то полученное число будет делиться на 250. (Оно может начинаться с нулей или просто быть нулём.) Доказать, что исходное число делится на 2999.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .