ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дано трехзначное число ABB, произведение цифр которого  — двузначное число AC, произведение цифр этого числа равно C (здесь, как в математических ребусах, цифры в записи числа заменены буквами; одинаковым буквам соответствуют одинаковые цифры, разным  — разные). Определите исходное число.

Вниз   Решение


Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.




ВверхВниз   Решение


а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.
б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").

ВверхВниз   Решение


Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

ВверхВниз   Решение


В гимназии все ученики знают хотя бы один из древних языков – греческий или латынь, некоторые – оба языка. 85% всех ребят знают греческий язык и 75% знают латынь. Какая часть учащихся знает оба языка?

ВверхВниз   Решение


В треугольнике ABC угол C прямой. Докажите, что при гомотетии с центром C и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.

ВверхВниз   Решение


Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число  m + 6  тоже хорошее, а если число n плохое, то и число  n + 15  тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

ВверхВниз   Решение


Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79543  (#1)

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8

Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

Прислать комментарий     Решение

Задача 79544  (#2)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Необычные построения (прочее) ]
Сложность: 4-
Классы: 7,8,9

Проведя наименьшее количество линий (окружностей и прямых с помощью циркуля и линейки), постройте прямую, проходящую через данную точку параллельно заданной прямой.
Прислать комментарий     Решение


Задача 79545  (#3)

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8

В тёмной комнате на полке в беспорядке лежат четыре пары носков двух разных размеров и двух разных цветов. Какое наименьшее число носков необходимо, не выходя из комнаты, переложить с полки в чемодан, чтобы в нем оказались две пары различного размера и цвета?

Прислать комментарий     Решение

Задача 79547  (#5)

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Найдите все натуральные числа x, удовлетворяющие условиям: произведение цифр числа x равно  44x – 86868,  а сумма цифр является кубом натурального числа.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .