ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны натуральные числа m и n. Найти такие натуральные числа m1 и n1, не имеющие общих делителей, что m1 / n1 = m / n.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98755  (#1)

 [Бит - реверс]
Тема:   [ Двоичная система счисления ]
Сложность: 2

Целое положительное число m записывается в двоичной системе счисления и разряды (в этой записи) переставляются в обратном порядке. Получившееся число принимается за значение функции B (m). Напечатать значения для m = 512, 513, 514, ... , 1023. Вот, для ясности, начало этой распечатки: 1, 513, 257, ...

Прислать комментарий     Решение

Задача 98756  (#2)

 [Треугольник и точка.]
Тема:   [ Многоугольники ]
Сложность: 2

Заданы прямоугольные координаты х1, y1; х2, y2; х3 вершин треугольника и координаты x, y. Определить и напечатать, находится ли точка в треугольнике. Погрешностями вычислений пренебречь.

Прислать комментарий     Решение

Задача 98757  (#3)

 [Лабиринт]
Тема:   [ Обход графа в ширину ]
Сложность: 3

Может ли путник выйти из лабиринта? Если может, то напечатать путь от выхода до начального положения путника. Лабиринт задан массивом А размером 40*40, в котором:

А [k, m] = 0 , если клетка [k,m] "проходима'';

А [k,m] = 1, если клетка [k,m] '' непроходима ''.

Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ).

Прислать комментарий     Решение

Задача 98758  (#4)

 [Пила]
Тема:   [ Одномерные массивы ]
Сложность: 2-

Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел:

X [p+1]< X [p+2]>X [p+3]<...> X[p+k].

Прислать комментарий     Решение

Задача 98759  (#5)

 [Сократить дробь]
Тема:   [ Задачи с целыми числами ]
Сложность: 2-

Даны натуральные числа m и n. Найти такие натуральные числа m1 и n1, не имеющие общих делителей, что m1 / n1 = m / n.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .