ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 559]      



Задача 30690  (#004)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

У одного школьника есть 6 книг по математике, а у другого – 8. Сколькими способами они могут обменять три книги одного на три книги другого?

Прислать комментарий     Решение

Задача 30691  (#005)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

В шахматном кружке занимаются 2 девочки и 7 мальчиков. Для участия в соревновании необходимо составить команду из четырёх человек, в которую обязательно должна входить хотя бы одна девочка. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30692  (#006)

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

Прислать комментарий     Решение

Задача 30693  (#007)

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Прислать комментарий     Решение

Задача 30694  (#008)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8

Рота состоит из трёх офицеров, шести сержантов и 60 рядовых. Сколькими способами можно выделить из них отряд, состоящий из офицера, двух сержантов и 20 рядовых?

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .