ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 559]      



Задача 30273  (#014)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

В поезде едут три мудреца. Внезапно поезд въезжает в туннель, и после того, как загорается свет, каждый из мудрецов видит, что лица его коллег испачканы сажей, влетевшей в окно вагона. Все трое начинают смеяться над своими испачкавшимися попутчиками, однако внезапно самый сообразительный мудрец догадывается, что его лицо тоже испачкано. Как ему это удалось?

Прислать комментарий     Решение


Задача 30274  (#015)

 [Задача Гельфанда]
Темы:   [ Инварианты ]
[ Задачи на смеси и концентрации ]
Сложность: 2+
Классы: 6,7,8

Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?

Прислать комментарий     Решение

Задача 30275  (#016)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7

Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.

Прислать комментарий     Решение


Задача 30276  (#017)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

В примере на сложение цифры заменили буквами (причем одинаковые цифры - одинаковыми буквами, а разные цифры - разными буквами) и получили: БУЛОК + БЫЛО = МНОГО. Сколько же было булок? Их количество есть максимальное возможное значение числа МНОГО.

Прислать комментарий     Решение


Задача 30277  (#018)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Разведка звездной империи ФИГ-45 перехватила секретное шифрованное сообщение враждебной планеты Медуза: ДУРАК + УДАР = ДРАКА. Известно, что разные цифры зашифрованы разными буквами, а одинаковые цифры - одинаковыми буквами. Два электронных думателя взялись найти решение и получили два разных ответа. Может ли такое быть или один из них надо сдать в переплавку?

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .