Страница:
<< 1 2 [Всего задач: 6]
Задача
67299
(#6)
|
|
Сложность: 5 Классы: 8,9,10,11
|
В ряд слева направо стоят $N$ коробок, занумерованных подряд числами $1$, $2, \ldots, N$.
В некоторые коробки, стоящие подряд, положат по шарику, оставив остальные пустыми.
Инструкция состоит из последовательно выполняемых команд вида «поменять местами содержимое коробок № $i$ и № $j$», где $i$ и $j$ – числа. Для каждого ли $N$ существует инструкция, в которой не больше $100N$ команд, со свойством: для любой начальной раскладки указанного вида можно будет, вычеркнув из инструкции некоторые команды, получить инструкцию, после выполнения которой все коробки с шариками будут левее коробок без шариков?
Страница:
<< 1 2 [Всего задач: 6]