ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для натурального n обозначим Sn = 1! + 2! + ... + n!. Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277]
Задан числовой массив А [1:m]. Сосчитать и напечатать, сколько различных чисел в этом массиве. Например, в массиве 5, 7, 5 различных чисел два (5 и 7).
Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k].
Даны натуральные числа m и n. Найти такие натуральные числа m1 и n1, не имеющие общих делителей, что m1 / n1 = m / n.
(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа
array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла
речь. Число действий должно быть порядка
mn.
Вводится два числа. В выходной файл записать их сумму. Пример входного файла 2 3 Пример выходного файла 5
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке