ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая: a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3 Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
А [k, m] = 0 , если клетка [k,m] "проходима''; А [k,m] = 1, если клетка [k,m] '' непроходима ''. Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ).
a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3
Изначально первая пробирка содержит 100 миллилитров пива, а остальные две пусты. Требуется написать программу, которая выясняет, можно ли отделить в третьей пробирке один миллилитр пива, и если да, то находит минимально необходимое для этого число переливаний. Пиво можно переливать из одной пробирки в другую до тех пор, пока либо первая из них не станет пустой, либо одна из пробирок не окажется заполненной до какой-либо риски.
Входные данные Входной файл содержит количество вершин графа N (1 ≤ N ≤ 33) и список дуг графа, заданных номерами начальной и конечной вершин. Выходные данные Вывести в выходной файл матрицу N × N, элемент (i, j) которой равен числу различных путей, ведущих из вершины i в вершину j, или -1, если существует бесконечно много таких путей. Пример входного файла 5 1 2 2 4 3 4 4 1 5 3 1 1 Пример выходного файла -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 1 -1 0
Входные данные В первой строке входного файла записано целое число N – количество слов в списке (1 ≤ N ≤ 1000), а в последующих N строках – сами слова. Каждое из них является последовательностью не более чем из 10 строчных английских букв. Выходные данные Выведите в выходной файл слова в искомом порядке, либо сообщение «NO», если такого порядка не существует. Каждое слово должно быть выведено в отдельную строку выходного файла. Пример входного файла 4 b ab bc bb Пример выходного файла ab bb b bc
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|