ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||
Версия для печати
Убрать все задачи Уважаемые господа! Сегодня вам предлагается для каждого из следующих типов комбинаторных объектов: 1) перестановки N-элементного множества (лексикографический порядок); 2) K-элементные подмножества N-элементного множества (лексикографический порядок); 3) разбиения N-элементного множества на K непустых подмножеств (лексикографический, т.е. алфавитный, порядок); 4) разбиения числа N на слагаемые; 5) правильные скобочные последовательности из 2N скобок; 6) двоичные деревья с N вершинами; 7) цепочки из нулей и единиц длины N без двух единиц подряд; 8) перестановки N-элементного множества (порядок, в котором соседние перестановки отличаются транспозицией соседних элементов); 9) K-элементные подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются двумя элементами); 10) все подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются добавлением или удалением одного элемента); 11) подвешенные деревья с N вершинами; решить следующие две подзадачи: найти общее количество объектов и породить M объектов, начиная с L-го; по заданным объектам получить их номера. В качестве N-элементного множества везде подразумевается множество {1, ..., N}. Там, где порядок порождения комбинаторных объектов не указан, Вы можете выбрать его по своему усмотрению. Нумерация объектов начинается с нуля. Таким образом, Вам предстоит написать 11 программ. Задача
засчитывается, если Ваша программа прошла все тесты, в противном случае
|
Страница: << 1 2 [Всего задач: 7]
Входные данные Исходное выражение длиной не более 250 символов записано в первой строке входного файла. Выражение содержит не более 50 чисел, каждое из которых лежит в диапазоне от 0 до 106 . Пробелы внутри чисел не допускаются. Выходные данные Выведите в первую строку выходного файла максимально возможное после расстановки скобок значение выражения, а во вторую строку – само это выражение (если вариантов несколько, нужно выдать любой из них). Пример входного файла 1+2 - 3.0*4 Пример выходного файла 0 ((1+2)-3)*4
1) перестановки N-элементного множества (лексикографический порядок); 2) K-элементные подмножества N-элементного множества (лексикографический порядок); 3) разбиения N-элементного множества на K непустых подмножеств (лексикографический, т.е. алфавитный, порядок); 4) разбиения числа N на слагаемые; 5) правильные скобочные последовательности из 2N скобок; 6) двоичные деревья с N вершинами; 7) цепочки из нулей и единиц длины N без двух единиц подряд; 8) перестановки N-элементного множества (порядок, в котором соседние перестановки отличаются транспозицией соседних элементов); 9) K-элементные подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются двумя элементами); 10) все подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются добавлением или удалением одного элемента); 11) подвешенные деревья с N вершинами; решить следующие две подзадачи: найти общее количество объектов и породить M объектов, начиная с L-го; по заданным объектам получить их номера. В качестве N-элементного множества везде подразумевается множество {1, ..., N}. Там, где порядок порождения комбинаторных объектов не указан, Вы можете выбрать его по своему усмотрению. Нумерация объектов начинается с нуля. Таким образом, Вам предстоит написать 11 программ. Задача
засчитывается, если Ваша программа прошла все тесты, в противном случае
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|