Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 76]
|
|
Сложность: 3+ Классы: 7,8,9
|
При изготовлении партии из N ≥ 5 монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково).
Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь,
убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков.
Докажите, что в каждом из этих отрезков, кроме двух крайних лежит ровно одно из p + q – 2 чисел 1/p, 2/p, ..., p–1/p, 1/q, 2/q, ..., q–1/q.
|
|
Сложность: 4- Классы: 9,10,11
|
В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.
|
|
Сложность: 4- Классы: 10,11
|
Верно ли, что на графике функции y = x³ можно отметить такую точку A, а на графике функции y = x³ + |x| + 1 – такую точку B, что расстояние AB не превысит 1/100?
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что на графике функции y = x³
можно отметить такую точку A, а на графике функции y = x³ + |x| + 1 – такую точку B, что
расстояние AB не превышает 1/100.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 76]