ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Тема: ЕГЭ >> Умения >> 4 >> 4.2
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Объем конуса равен 64 . Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 87]      



Задача 115071

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Объем конуса равен 24 . Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


Прислать комментарий     Решение

Задача 115073

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Объем конуса равен 64 . Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


Прислать комментарий     Решение

Задача 115075

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Объем конуса равен 144 . Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


Прислать комментарий     Решение

Задача 115079

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.


Прислать комментарий     Решение

Задача 115082

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Площадь поверхности куба равна 18. Найдите его диагональ.


Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .