Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Вниз   Решение


Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.


ВверхВниз   Решение


Ученик не заметил знак умножения между двумя трёхзначными числами и написал одно шестизначное число, которое оказалось в семь раз больше их произведения. Найдите эти числа.

ВверхВниз   Решение


Прямоугольный параллелепипед описан около сферы радиуса 6,5 . Найдите его объем.


ВверхВниз   Решение


Существуют ли три натуральных числа, больших 1 и таких, что квадрат каждого из них, уменьшенный на единицу, делится на каждое из остальных?

ВверхВниз   Решение


Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.


ВверхВниз   Решение


Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 3 . Объем параллелепипеда равен 27 . Найдите высоту цилиндра.


ВверхВниз   Решение


Четыре натуральных числа таковы, что квадрат суммы любых двух из них делится на произведение двух оставшихся.
Докажите, что по крайней мере три из этих чисел равны между собой.

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Прямоугольный параллелепипед описан около сферы радиуса 7,5 . Найдите его объем.


ВверхВниз   Решение


Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

ВверхВниз   Решение


Докажите, что уравнение   x² + y² + z² = x³ + y³ + z³   имеет бесконечное число решений в целых числах x, y, z.

ВверхВниз   Решение


Прямоугольный параллелепипед описан около сферы радиуса 8,5 . Найдите его объем.


ВверхВниз   Решение


На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

ВверхВниз   Решение


Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?

ВверхВниз   Решение


 Площадь большого круга шара равна 3. Найдите площадь поверхности шара.


Вверх   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 374]      



Задача 115090

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

 Площадь большого круга шара равна 3. Найдите площадь поверхности шара.


Прислать комментарий     Решение

Задача 115091

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 3 . Объем параллелепипеда равен 27 . Найдите высоту цилиндра.


Прислать комментарий     Решение

Задача 115093

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.


Прислать комментарий     Решение

Задача 115095

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба.


Прислать комментарий     Решение

Задача 115097

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.


Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .