ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Информатика
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи То же, если f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30, f(2n) = 43 f(n) + 57 f(n + 1), f(2n + 1) = 91 f(n) + 179 f(n + 1) при n≥2. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 277]
Подмножеством данного множества называют любой набор элементов из данного множества. При этом считается, что все элементы множества различны, и что порядок элементов в подмножестве не имеет значения (то есть {1,3} и {3,1} - это одно и то же подмножество множества {1,2,3}). Отметим, что у любого множества есть подмножество, в котором нет ни одного элемента: {} (его называют пустым), и подмножество, включающее все элементы данного множества. Требуется напечатать все подмножества данного множества {1,2,...,n}, исключая пустое Входные данные Одно число n - натуральное число, не превосходящее 10.
Выходные данные В каждой строке вывести сначала количество чисел в соответствующем подмножестве, а затем сами эти числа. Выводить подмножества можно в любом порядке, в каждом подмножестве числа должны быть упорядочены по возрастанию.
Пример
Напечатайте все последовательности из n натуральных чисел (возможно, с повторениями), в которых i-й член не превосходит i. Последовательности требуется вывести в лексикографическом порядке.
Входные данные Одно число n - натуральное число, не превосходящее 8.
Выходные данные В каждой строке вывести n чисел через пробел - запись соответствующего размещения с повторением.
Пример
Комментарий: на первом месте может стоять только число 1, на втором - 1 или 2, на третьем - 1, 2 или 3, и т.д.
Входные данные Входной двоичный файл содержит последовательность 32-битовых целых чисел со знаком (File Of LongInt). Выходные данные Выведите в выходной текстовый файл искомое число. Пример входного файла XXYYXYXYXXYY Пример выходного файла 1498962264
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 277] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|