ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны натуральные числа n > 2 и m и вещественный массив А [1:m, 1:m, 1:n - 1].Найти минимальное значение суммы. R = A [i1, i2, 1] + A [i2, i3, 2] + A [in-1, in, n-1] Для возможных наборов целых чисел 1< i1, i2, ... , in < m. Пояснение. Числа m, n - величины порядка нескольких десятков. Поэтому неприемлемо решение с числом действий порядка mn. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]
R = A [i1, i2, 1] + A [i2, i3, 2] + A [in-1, in, n-1] Для возможных наборов целых чисел 1< i1, i2, ... , in < m. Пояснение. Числа m, n - величины порядка нескольких десятков. Поэтому неприемлемо решение с числом действий порядка mn.
Формат входных данных Первая строка N размер доски. Далее следует N строк, каждая из которых содержит N целых чисел, представляющие доску. Формат выходных данных Одно число максимальная сумма.
Формат входных данных Одно число 0 < N < 31. Формат выходных данных Одно число количество безопасных вариантов формирования стопки.
Ограничения: 2 <= K <= 10, N + K <= 18. Формат входных данных Числа N и K в десятичной записи, разделенные пробелом или переводом строки. Формат выходных данных Искомое число в десятичной записи.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|