ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли тетраэдр, у которого пары противоположных рёбер равны 3 и 3, 4 и 4, 5 и 5? Внутри параллелограмма ABCD отметили точку E так, что CD = CE. В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба. В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью? Докажите, что равные хорды удалены от центра окружности на равные расстояния. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]
Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q).
В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.
Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?
На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?
У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке