ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 67457

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Эйлера ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

Существуют ли такие натуральные числа $m$ и $n$ и такой многочлен $f(x)$ с целыми коэффициентами, что $f(m)$ не делится на $n$, но $f(p^k)$ делится на $n$ для любого простого числа $p$ и любого натурального $k$?
Прислать комментарий     Решение


Задача 67515

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Эйлера ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

Барон Мюнхгаузен утверждает, что существуют многочлен $f(x)$ с целыми коэффициентами и натуральные числа $m$ и $n$ со свойством: $f(m)$ не делится на $n$, но $f(p^k)$ делится на $n$ для любого простого $p$ и любого натурального $k$. Не ошибается ли барон?
Прислать комментарий     Решение


Задача 73597

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Теорема Эйлера ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

Прислать комментарий     Решение

Задача 60821

Темы:   [ Китайская теорема об остатках ]
[ Малая теорема Ферма ]
[ Теорема Эйлера ]
Сложность: 4-
Классы: 9,10,11

Найдите остатки от деления:  а) 1910 на 6;   б) 1914 на 70;   в) 179 на 48;   г) 141414 на 100.

Прислать комментарий     Решение

Задача 21989

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Теорема Эйлера ]
Сложность: 3+
Классы: 7,8,9

Докажите, что существует степень тройки, оканчивающаяся на 001.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .