ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 98832

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Представляя разбиения как неубывающие последовательности, перечислить их в лексикографическом порядке. Пример для n=4: 1+1+1+1, 1+1+2, 1+3, 2+2, 4.
Прислать комментарий     Решение


Задача 98833

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Представляя разбиения как неубывающие последовательности, перечислить их в порядке, обратном лексикографическому. Пример для n=4: 4, 2+2, 1+3, 1+1+2, 1+1+1+1.
Прислать комментарий     Решение


Задача 98834

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 4

Перечислить все последовательности длины n из чисел 1..k в таком порядке, чтобы каждая следующая отличалась от предыдущей в единственной цифре, причём не более, чем на 1.
Прислать комментарий     Решение


Задача 98835

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 4

Напечатать все перестановки чисел 1..n так, чтобы каждая следующая получалась из предыдущей перестановкой (транспозицией) двух соседних чисел. Например, при n=3 допустим такой порядок:

3.2 1 $ \to$ 2 3.1 $ \to$ 2.1 3 $ \to$ 1 2.3 $ \to$ 1.3 2 $ \to$ 3 1 2
(между переставляемыми числами вставлены точки).
Прислать комментарий     Решение

Задача 98836

Темы:   [ Нерекурсивная генерация объектов ]
[ Числа Каталана ]
Сложность: 4

Перечислить все последовательности длины 2n, составленные из n единиц и n минус единиц, у которых сумма любого начального отрезка неотрицательна, --е число минус единиц в нём не превосходит числа единиц. (Число таких последовательностей называют числом Каталана)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .