Страница: 1
2 3 4 >> [Всего задач: 16]
|
|
Сложность: 4 Классы: 9,10,11
|
24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".
|
|
Сложность: 5 Классы: 10,11
|
В таблице размером m×n записаны числа так, что для каждых двух строк и каждых двух столбцов сумма чисел в двух противоположных вершинах образуемого ими прямоугольника равна сумме чисел в двух других его вершинах. Часть чисел стёрли, но по оставшимся можно восстановить стёртые. Докажите, что осталось не меньше чем (n + m – 1) чисел.
|
|
Сложность: 2+ Классы: 7,8,9
|
а) a + 1 делится на 3. Докажите, что 4 + 7a делится на 3.
б) 2 + a и 35 – b делятся на 11. Докажите, что a + b делится на 11.
Для некоторых целых x и y число 3x + 2y делится на 23. Докажите, что число 17x + 19y также делится на 23.
|
|
Сложность: 3- Классы: 7,8,9
|
Известно, что выражение 14x + 13y делится на 11 при некоторых целых x и y. Докажите, что 19x + 9y также делится на 11 при таких x и y.
Страница: 1
2 3 4 >> [Всего задач: 16]