ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 138]      



Задача 30897

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 32888

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

По кругу расставили 1000 чисел, среди которых нет нулей, и раскрасили их поочередно в белый и чёрный цвета. Оказалось, что каждое чёрное число равно сумме двух соседних с ним белых чисел, а каждое белое число равно произведению двух соседних с ним чёрных чисел. Чему может быть равна сумма всех расставленных чисел?

Прислать комментарий     Решение

Задача 60301

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение


Задача 60302

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 60569

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Вычислите сумму

$\displaystyle {\frac{1}{1\cdot2}}$ + $\displaystyle {\frac{2}{1\cdot3}}$ +...+ $\displaystyle {\frac{F_{n}}{F_{n-1}\cdot F_{n+1}}}$.


Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 138]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .