ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 536]      



Задача 116846

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Прислать комментарий     Решение

Задача 21994

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 7,8

В таблице 10×10 расставлены целые числа, причём каждые два числа в соседних клетках отличаются не более чем на 5.
Докажите, что среди этих чисел есть два равных.

Прислать комментарий     Решение

Задача 32825

Темы:   [ Турниры и турнирные таблицы ]
[ Соображения непрерывности ]
Сложность: 3-
Классы: 7,8,9

Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

Прислать комментарий     Решение

Задача 35323

Темы:   [ Турниры и турнирные таблицы ]
[ Соображения непрерывности ]
Сложность: 3-
Классы: 7,8

Матч Бавария – Спартак окончился со счетом  5 : 8.  Докажите, что в матче был такой момент, когда Спартаку оставалось забить столько мячей, сколько Бавария уже забила к этому времени.

Прислать комментарий     Решение

Задача 98378

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .