Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 79]
|
|
Сложность: 3+ Классы: 9,10
|
Докажите мультипликативность функций τ(n) и σ(n).
|
|
Сложность: 3+ Классы: 9,10
|
Пусть (m, n) > 1. Что больше τ(mn) или τ(m)τ(n)? Исследуйте тот же вопрос для функции σ(n).
[Совершенные числа]
|
|
Сложность: 3+ Классы: 9,10
|
Число n называется совершенным, если σ(n) = 2n.
Докажите, что если 2k – 1 = p – некоторое простое число Мерсенна, то n = 2k–1(2k – 1) – совершенное число.
[Дружественные числа]
|
|
Сложность: 3+ Классы: 9,10
|
Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если σ(m) – m = n и σ(n) – n = m.
Докажите, что если все три числа p = 3·2k–1 – 1, q = 3·2k – 1 и r = 9·22k–1 – 1 – простые, то числа m = 2kpq и n = 2kr – дружественные. Постройте примеры дружественных чисел.
Докажите, что число 11...1 (1986 единиц) имеет по крайней мере
а) 8; б) 32 различных делителя.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 79]