ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка? |
Задача 104095
УсловиеВ окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD. Решение
Докажем вспомогательное утверждение: через точку внутри окружности, отличную от центра, можно провести не более двух хорд равной длины.
Теперь обратимся к нашей задаче (см. рисунок). Рассмотрим симметрию относительно прямой OM. При этой симметрии окружность перейдёт сама в себя, а хорда AB — в некоторую хорду той же длины, проходящую через точку M. Этой хордой, в силу доказанного утверждения, является хорда QP. Из симметрии следует равенство углов: Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке