ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Даны три треугольника: A1A2A3, B1B2B3, C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.

   Решение

Задача 108936
Темы:    [ Признаки подобия ]
[ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Докажите, что углы DFE и CFE равны.


Решение

Из подобия треугольников BEC и DEA следует, что  BC : AD = BE : ED,  а из теоремы о пропорциональных отрезках –  BF : AF = BE : ED.  Поэтому
BC : AD = BF : AF.  Значит, прямоугольные треугольники CBF и DAF подобны по двум сторонам и углу между ними. Следовательно,
CFE = ∠BCF = ∠ADF = ∠DFE.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6287

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .