|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? Найдите наибольшее значение функции y = 11 cos x+12x-7 на отрезке [- |
Задача 111265
УсловиеВ треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?РешениеПервый способ.Рассмотрим произвольный треугольник АВС с точками E и F на сторонах АС и ВС . Пусть С' – образ точки С , а F' – образ точки F при симметрии с центром в точке D (см. рис. 11.5.1). Тогда четырехугольник ACBС' – параллелограмм, а точка F' лежит на его стороне АС' . Так как Треугольники AF'D и BFD равны, значит, SAEDF'=SAED+SAF'D= SAED+SBFD . Кроме того, так как D – середина отрезка FF' , то SDEF=SDEF' . Так как SAEDF'>SDEF' , то SAED+SBFD>SDEF , следовательно, указанным образом расположить точки невозможно. Второй способ. Воспользуемся вспомогательным утверждением: пусть в четырехугольнике АВСD Проведем общую медиану MD треугольников АМВ и EDF . В четырехугольнике ADME рассмотрим сумму углов ЕАD и MDA , а в четырехугольнике BDMF – сумму углов FBD и MDB . Хотя бы одна из этих сумм меньше, чем 180o . Действительно, предположим противное, тогда ( Ответтак расположить точки нельзя.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|