|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой. |
Задача 102820
УсловиеУчасток m×n. Прямоугольный участок размера m×n разбит на квадраты 1×1. Каждый квадрат является отдельным участком, соединенным калитками с соседними участками. При каких размерах участка можно обойти все квадратные участки, побывав в каждом по одному разу, и вернуться в первоначальный?РешениеРаскрасим квадраты в шахматном порядке. При каждом переходе меняется цвет клетки, поэтому, если такой маршрут возможен, то только при четном числе клеток (возвращаемся в ту же клетку), т.е. или m или n четные числа. Осталось проверить, что при любых размерах обход возможен из любой клетки.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|