|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) |
Задача 79377
УсловиеДоказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.РешениеПусть стороны выпуклого n-угольника лежат на диагоналях данного 100-угольника. Для каждой стороны n - угольника рассмотрим диагональ, на которой она лежит, и отметим её концы. Всего будет отмечено 2n точек. Из каждой вершины данного 100-угольника выходит не более двух таких диагоналей, поэтому каждая вершина отмечена не более двух раз. Следовательно, 2n ≤ 2 · 100, т.е. n ≤ 100.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|