|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа. На прямоугольном листе клетчатой бумаги размером m×n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов? Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1. |
Задача 79377
УсловиеДоказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.РешениеПусть стороны выпуклого n-угольника лежат на диагоналях данного 100-угольника. Для каждой стороны n - угольника рассмотрим диагональ, на которой она лежит, и отметим её концы. Всего будет отмечено 2n точек. Из каждой вершины данного 100-угольника выходит не более двух таких диагоналей, поэтому каждая вершина отмечена не более двух раз. Следовательно, 2n ≤ 2 · 100, т.е. n ≤ 100.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|