ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана фигура, состоящая из 16 отрезков (см. рис.).

Доказать, что нельзя провести ломаную, пересекающую каждый из отрезков ровно один раз. Ломаная может быть незамкнутой и самопересекающейся, но её вершины не должны лежать на отрезках, а стороны – проходить через вершины фигуры.

   Решение

Задача 66135
Темы:    [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.


Решение

Пусть L – середина отрезка BK. Тогда ML – средняя линия треугольника BCK, то есть  ML || CK  и  ML = ½ CK = ½ AB = LN.  Следовательно, треугольник MLN равнобедренный. Из параллельности прямых ML и PK следует, что треугольник PKN подобен треугольнику MLN, значит, и он равнобедренный.

Замечания

Можно также отложить на продолжении стороны AB за точку A отрезок  AQ = BK  и использовать равнобедренный треугольник QKC и то, что MN – средняя линия треугольника QCB.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Дата 2017-04-16
класс
Класс 8-9
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .