|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ. |
Задача 76501
УсловиеРазделить a128 – b128 на (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64). Ответa – b. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|