ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?

   Решение

Задача 57338
Тема:    [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 4
Классы: 9
В корзину
Прислать комментарий

Условие

Внутри треугольника ABC взята точка M. Докажите, что  4S $ \leq$ AM . BC + BM . AC + CM . AB, где S — площадь треугольника ABC.

Решение

Опустим из точек B и C перпендикуляры BB1 и CC1 на прямую AM. Тогда  2SAMB + 2SAMC = AM . BB1 + AM . CC1 $ \leq$ AM . BC, так как  BB1 + CC1 $ \leq$ BC. Аналогично  2SBMC + 2SBMA $ \leq$ BM . AC и  2SCMA + 2SCMB $ \leq$ CM . AB. Складывая эти неравенства, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 5
Название Площадь треугольника не превосходит половины произведения двух сторон
Тема Площадь треугольника не превосходит половины произведения двух сторон
задача
Номер 09.033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .