|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задача 58522
УсловиеПусть стороны самопересекающихся четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность, пересекают хорду AB этой окружности в точках P, Q, R, S и P', Q', R', S' соответственно (сторона KL — в точке P, LM — в точке Q, и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с соответственными тремя из точек P', Q', R', S', то и оставшиеся две точки тоже совпадают. (Предполагается, что хорда AB не проходит через вершины четырехугольников.)РешениеПусть для определенности P = P', Q = Q' и R = R'. Согласно задаче 31.051При этом требуется доказать, что s = s'. Равенство (1) можно преобразовать к виду Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|