ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два лесоруба, Иван и Прохор, работали вместе в лесу и сели перекусить. У Ивана было 4 лепешки, а у Прохора — 8. Тут к ним подошел охотник.
— Вот, братцы, заблудился в лесу, до деревни далеко, а есть очень хочется. Пожалуйста, поделитесь со мной хлебом-солью!
— Ну что ж, садись, чем богаты, тем и рады, — сказали лесорубы.
Двенадцать лепешек были разделены поровну на троих. После еды охотник пошарил в карманах, нашел гривенник и полтинник и сказал:
— Не обессудьте, братцы, больше ничего нет. Поделитесь, как знаете!
Охотник ушел, а лесорубы заспорили. Прохор говорит: — По-моему, деньги надо разделить поровну! А Иван ему возражает: — За 12 лепешек — 60 к., значит за каждую лепешку по 5 к. Раз у тебя было 8 лепешек — тебе 40 к., у меня 4 лепешки — мне 20 к.! А как бы Вы разделили эти деньги между лесорубами?

   Решение

Задача 35746
Темы:    [ Многогранные углы ]
[ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.


Подсказка

Рассмотрите две прямые пересечения пар противоположных граней и сечение плоскостью, параллельной этим прямым.


Решение

Пусть ABCDS – выпуклый четырёхгранный угол с вершиной S. Плоскости противоположных граней ASB и CSD пересекаются по прямой a, а граней ASD и BSD – по прямой b, проходящим через S. Через пересекающиеся прямые a и b проведём плоскость П. Любая плоскость, проведённая через произвольную точку ребра данного четырёхгранного угла, пересекает этот угол по некоторому четырёхугольнику. По теореме о пересечении двух параллельных плоскостей третьей противоположные стороны этого четырёхугольника попарно параллельны, следовательно, это параллелограмм.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .