Страница: 1 [Всего задач: 5]
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
|
|
Сложность: 4- Классы: 10,11
|
Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.
Докажите, что сумма плоских углов выпуклого многогранного угла
меньше 360o .
|
|
Сложность: 5+ Классы: 10,11
|
На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек,
лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если
три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то
и четвёртая плоскость также его касается.
|
|
Сложность: 7 Классы: 10,11
|
Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.
Страница: 1 [Всего задач: 5]