Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 5- Классы: 9,10,11
|
У выпуклого многогранника все грани - правильные пятиугольники или
правильные шестиугольники. Сколько среди этих граней пятиугольников?
|
|
Сложность: 5 Классы: 10,11
|
Один из простейших многоклеточных
организмов — водоросль
вольвокс — представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток
на 12 больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?
[Теорема Эйлера]
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что для любого выпуклого многогранника имеет место
соотношение
B - P + Г = 2,
где
B — число его вершин,
P — число ребер, Г — число граней.
|
|
Сложность: 4- Классы: 10,11
|
Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.
|
|
Сложность: 4 Классы: 10,11
|
Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.
Страница: 1
2 >> [Всего задач: 6]