Страница: 1
2 3 4 >> [Всего задач: 17]
|
|
Сложность: 3 Классы: 10,11
|
Сфера радиуса 2 пересечена плоскостью, удалённой от центра на
расстояние 1. Найдите длину кратчайшего пути по поверхности
сферы между двумя наиболее удалёнными точками сечения.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Итак, Чукча выходит каждый день на охоту по следующему маршруту:
10 км на юг,
10 км на восток,
10 км на север
(На запад чукча не ходит)
И хоп! Оказывается перед своим чумом.
"Однако!" говорит чукча.
Теперь вопрос:
найти Геометрическое Место Точек, где может находиться чум чукчи.
|
|
Сложность: 4 Классы: 10,11
|
На сфере радиуса 1 дан треугольник, стороны которого – дуги трёх различных окружностей радиуса 1 с центром в центре сферы, имеющие длины меньше $\pi$, а площадь равна четверти площади сферы. Докажите, что четырьмя копиями такого треугольника можно покрыть всю сферу.
|
|
Сложность: 4 Классы: 10,11
|
Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?
|
|
Сложность: 4 Классы: 7,8,9,10
|
Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя.
а) Какого цвета был медведь?
б) Мог ли там оказаться не медведь, а пингвин?
Страница: 1
2 3 4 >> [Всего задач: 17]