Страница: 1
2 3 4 5 6 7 >> [Всего задач: 159]
Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?
|
|
Сложность: 3 Классы: 5,6,7
|
В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.
|
|
Сложность: 3 Классы: 8,9,10
|
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.
Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если ∠BAO = ∠DAC, то диагонали четырёхугольника перпендикулярны.
Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём AC < ½ AB. Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна
AB.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 159]