ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66644
Темы:    [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

Решение

Пусть $F$ – проекция $L$ на $AB$, $G$ – точка, симметричная $E$ относительно $F$. Тогда по теореме Фалеса $AE = EF = FG$ и $AG = 3 AE = AC$. Так как $AL$ – биссектриса угла $A$, а $FL$ – серединный перпендикуляр к $EG$, получаем, что $CL = LG = LE$.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2018
Заочный тур
задача
Номер 3 [8 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .