Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 204]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов.
Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд записаны $n > 2$ различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?
|
|
Сложность: 3+ Классы: 10,11
|
Около правильного тетраэдра ABCD описана сфера. На его гранях как на
основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность с центром O. Описанные окружности треугольников ABO и CDO, пересеклись второй раз в точке F. Докажите, что описанная окружность треугольника AFD проходит через точку E пересечения отрезков AC и BD.
Можно ли разрезать какой-нибудь треугольник на четыре выпуклые фигуры: треугольник, четырёхугольник, пятиугольник и шестиугольник?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 204]