Страница: 1 2 3 4 5 6 7 >> [Всего задач: 230]
Из произвольной точки M катета BC прямоугольного
треугольника ABC на гипотенузу AB опущен перпендикуляр MN.
Докажите, что
MAN =
MCN.
Диагонали трапеции ABCD с основаниями AD и BC
пересекаются в точке O; точки B' и C' симметричны
вершинам B и C относительно биссектрисы угла BOC.
Докажите, что
C'AC =
B'DB.
Продолжения сторон AB и CD вписанного
четырехугольника ABCD пересекаются в точке P, а продолжения
сторон BC и AD — в точке Q. Докажите, что точки пересечения
биссектрис углов AQB и BPC со сторонами четырехугольника
являются вершинами ромба.
|
|
Сложность: 3 Классы: 9,10,11
|
В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Хорды $AB$ и $CD$ окружности $\omega$ пересекаются в точке $E$, причем $AD = AE = EB$. На отрезке $CE$ отметили точку $F$, так что $ED = CF$. Биссектриса угла $AFC$ пересекает дугу $DAC$ в точке $P$. Докажите, что точки $A$, $E$, $F$ и $P$ лежат на одной окружности.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 230]