Страница: 1
2 3 >> [Всего задач: 14]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Точка $M$ – середина большей боковой стороны $CD$ прямоугольной трапеции $ABCD$. Описанные около треугольников $BCM$ и $AMD$ окружности $\omega_1$ и $\omega_2$ пересекаются в точке $E$. Пусть $ED$ пересекает $\omega_1$ в точке $F$, а $FB$ пересекает $AD$ в $G$. Докажите, что $GM$ – биссектриса угла $BGD$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Хорды $AB$ и $CD$ окружности $\omega$ пересекаются в точке $E$, причем $AD = AE = EB$. На отрезке $CE$ отметили точку $F$, так что $ED = CF$. Биссектриса угла $AFC$ пересекает дугу $DAC$ в точке $P$. Докажите, что точки $A$, $E$, $F$ и $P$ лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.
Страница: 1
2 3 >> [Всего задач: 14]