Страница: 1
2 3 4 >> [Всего задач: 20]
|
|
Сложность: 3 Классы: 9,10,11
|
Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.
Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.
|
|
Сложность: 4- Классы: 9,10
|
Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.
|
|
Сложность: 4- Классы: 9,10,11
|
Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.
Страница: 1
2 3 4 >> [Всего задач: 20]