Страница: 1
2 3 4 5 6 7 >> [Всего задач: 56]
|
|
Сложность: 3- Классы: 7,8,9
|
На клетчатой бумаге отмечены произвольным образом
2000 клеток. Докажите, что среди них
всегда можно выбрать не менее 500 клеток,
попарно не соприкасающихся друг с другом
(соприкасающимися считаются клетки,
имеющие хотя бы одну общую вершину).
|
|
Сложность: 3 Классы: 8,9,10
|
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.
На клетчатой бумаге даны произвольные
n клеток.
Докажите, что из них можно выбрать не менее
n/4 клеток,
не имеющих общих точек.
Плоскость раскрашена в три цвета. Докажите, что
найдутся две точки одного цвета, расстояние между которыми равно 1.
|
|
Сложность: 3 Классы: 7,8,9
|
В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 56]