Версия для печати
Убрать все задачи
20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

Решение
Точка
M лежит на стороне
BC треугольника
ABC . Известно, что радиус окружности, вписанной в треугольник
ABM ,
в два раза больше радиуса окружности, вписанной в треугольник
ACM . Может ли отрезок
AM оказаться медианой треугольника
ABC ?


Решение
Известно, что (m, n) > 1. Что больше φ(mn) или φ(m)φ(n)? Определение функции φ(n) см. в задаче 60758.


Решение
Собрались 2
n человек, каждый из которых знаком не менее чем с
n
присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить
их за круглым столом так, что при этом каждый будет сидеть рядом со
своими знакомыми (
n
2).

Решение