ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

Вниз   Решение


Докажите, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 160]      



Задача 67472

Темы:   [ Оценка + пример ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Обратный ход ]
Сложность: 3+
Классы: 7,8,9,10,11

На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).

Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды? При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.
Прислать комментарий     Решение

Задача 67406

Темы:   [ Оценка + пример ]
[ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10,11

Автор: Глебов А.

Назовём двуклетчатую карточку $2\times 1$ правильной, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку?
Прислать комментарий     Решение


Задача 67422

Темы:   [ Оценка + пример ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Есть $N$ удавов, их пасти имеют размеры 1 см, 2 см, ..., $N$ см. Каждый удав может заглотить яблоко любого диаметра (в см), не превосходящего размер его пасти. Но по внешнему виду нельзя определить, какая у кого пасть. Вечером смотритель может выдать каждому удаву сколько хочет яблок каких хочет размеров, и за ночь удав заглотит все те из них, что влезают ему в пасть. Какое минимальное количество яблок суммарно смотритель должен вечером выдать удавам, чтобы утром по результату он гарантированно определил размер пасти каждого удава?
Прислать комментарий     Решение


Задача 67432

Темы:   [ Оценка + пример ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 8,9,10,11

В каждой клетке таблицы $N\times N$ записано число. Назовём клетку $C$ хорошей, если в какой-то из клеток, соседних с $C$ по стороне, стоит число на 1 больше, чем в $C$, а в какой-то другой из клеток, соседних с $C$ по стороне, стоит число на 3 больше, чем в $C$. Каково наибольшее возможное количество хороших клеток?
Прислать комментарий     Решение


Задача 67438

Темы:   [ Оценка + пример ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 8,9,10,11

Автор: Глебов А.

В каждой клетке таблицы $N\times N$ записано число. Назовём клетку хорошей, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 160]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .