Страница: 1
2 3 4 5 6 7 >> [Всего задач: 161]
На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?
Назовем крокодилом шахматную фигуру,
ход которой заключается в прыжке на m клеток по вертикали или по
горизонтали, и потом на n клеток в перпендикулярном направлении.
Докажите что для любых m и n можно так
раскрасить бесконечную клетчатую доску в 2 цвета (для каждых
конкретных m и n своя раскраска),
что всегда 2 клетки, соединенные одним ходом крокодила,
будут покрашены
в разные цвета.
Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая
отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
|
|
Сложность: 3- Классы: 7,8,9
|
На клетчатой бумаге отмечены произвольным образом
2000 клеток. Докажите, что среди них
всегда можно выбрать не менее 500 клеток,
попарно не соприкасающихся друг с другом
(соприкасающимися считаются клетки,
имеющие хотя бы одну общую вершину).
Можно ли из 13 кирпичей
1×1×2
сложить куб
3×3×3 с дыркой
1×1×1
в центре?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 161]