ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 35746
УсловиеДокажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм. ПодсказкаРассмотрите две прямые пересечения пар противоположных граней и сечение плоскостью, параллельной этим прямым. РешениеПусть ABCDS – выпуклый четырёхгранный угол с вершиной S. Плоскости противоположных граней ASB и CSD пересекаются по прямой a, а граней ASD и BSD – по прямой b, проходящим через S. Через пересекающиеся прямые a и b проведём плоскость П. Любая плоскость, проведённая через произвольную точку ребра данного четырёхгранного угла, пересекает этот угол по некоторому четырёхугольнику. По теореме о пересечении двух параллельных плоскостей третьей противоположные стороны этого четырёхугольника попарно параллельны, следовательно, это параллелограмм. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|