Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66868
Тема:    [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Ивлев Б.М.

В куче n камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких n начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?

Решение

Стратегия: каждый раз оставлять в куче кратное 4 число камней: при n=4k+1 надо взять один камень, при n=4k+2 — два камня; при n=4k+3 надо взять p камней, где p — простой делитель числа n вида 4q+3 (такой есть, иначе все простые делители n имеют вид 4m+1, а произведение чисел такого вида тоже имеет такой вид и не равно 4k+3).

Противник из кучи с кратным 4 числом камней не может взять число камней, кратное 4 (это будет не простое число), поэтому начинающий и дальше может играть по стратегии.

Ответ

при n, не кратном 4.

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 42
Дата 2020/21
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .