|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Карлсон написал дробь 10/97. Малыш может: Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.) |
Задача 116192
УсловиеABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость? РешениеДа, можно. Hапример, одним из способов, показанных на рисунках а–в.
Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|