|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы. а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников. б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника? |
Задача 109640
УсловиеКуб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета. Решение Пусть PQ – горизонтальное ребро одного из кубиков. Обозначим через CPQ вертикально расположенный прямоугольник,
нижняя сторона которого – PQ, а верхняя лежит на поверхности куба. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|