ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Смуров М.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 9]      



Задача 108160

Темы:   [ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой  ∠MAD = ∠AMO,  где O – точка пересечения диагоналей параллелограмма. Докажите, что  MD = MC.

Прислать комментарий     Решение

Задача 108163

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

Прислать комментарий     Решение

Задача 108203

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9,10

Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что  ∠APB = ∠CPD,  ∠AQB = ∠CQD.
Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.

Прислать комментарий     Решение

Задача 108185

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

На стороне BC выпуклого четырёхугольника ABCD взяты точки E и F (точка E ближе к точке B , чем точка F ). Известно, что BAE = CDF и EAF = FDE . Докажите, что FAC = EDB .
Прислать комментарий     Решение


Задача 109677

Темы:   [ Разрезания на параллелограммы ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 7,8,9

Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .