Страница: 1
2 >> [Всего задач: 9]
На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC.
Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.
|
|
Сложность: 4- Классы: 8,9,10
|
Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что ∠APB = ∠CPD, ∠AQB = ∠CQD.
Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.
На стороне
BC выпуклого четырёхугольника
ABCD взяты точки
E и
F (точка
E ближе к точке
B , чем точка
F ).
Известно, что
BAE = CDF и
EAF = FDE . Докажите, что
FAC =
EDB .
|
|
Сложность: 4 Классы: 7,8,9
|
Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника,
принадлежащую только одному параллелограмму, назовем хорошей.
Докажите, что хороших вершин не менее трех.
Страница: 1
2 >> [Всего задач: 9]